This presentation does not necessarily reflect the views of the United States Government, and is only the view of the authors

Resilience Quantification for Cross-agency Disaster Response

Igor Linkov, PhD

Senior Science and Technology Manager (SSTM), US Army Engineer R&D Center; US Army Corps of Engineers

Adjunct Professor, Carnegie Mellon University and University of Florida

lgor.linkov@usace.army.mil

8 December 2024

Action:

 Submit 1page Vision Statement on Resilience Quantification to <u>evidence@omb.eop.gov</u> and CC to <u>Igor.Linkov@usace.army.mil</u> by 12/20/2024

Risk -- "a situation involving exposure to danger [threat]."

Security -- "the state of being free from danger or threat."

Reliability -- "the quality of performing consistently well."

Don't conflate risk and resilience

'Risk' and 'resilience' are fundamentally different concepts that are often conflated. Yet maintaining the distinction is a policy necessity. Applying a riskbased approach to a problem that requires a resilience-based solution, or vice versa, can lead to investment in systems that do not produce the changes that

> Igor Linkov, Benjamin D. Trump US Army Corps of Engineers, Concord, Massachusetts, USA. Jeffrey Keisler University of Massachusetts Boston, USA. igor.linkov@usace.army.mil

Resilience -- "the capacity to recover quickly from difficulties." Definitions by Oxford Dictionary

Calls for Resilience

The White House
Office of the Press Secretary
For Immediate Release

Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013

CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013

BY THE PRESIDENT OF THE UNITED STATES OF AMERICA

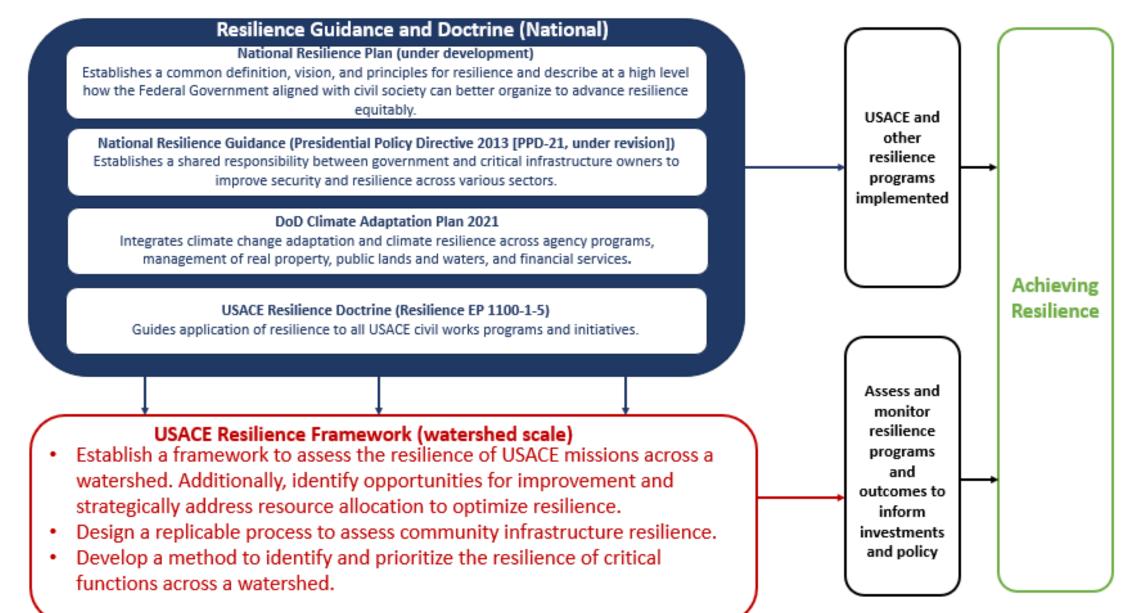
A PROCLAMATION

"Resilience" means the ability to anticipate, prepare for, and *adapt* to changing conditions and *withstand*, *respond to*, and *recover* rapidly from disruptions.

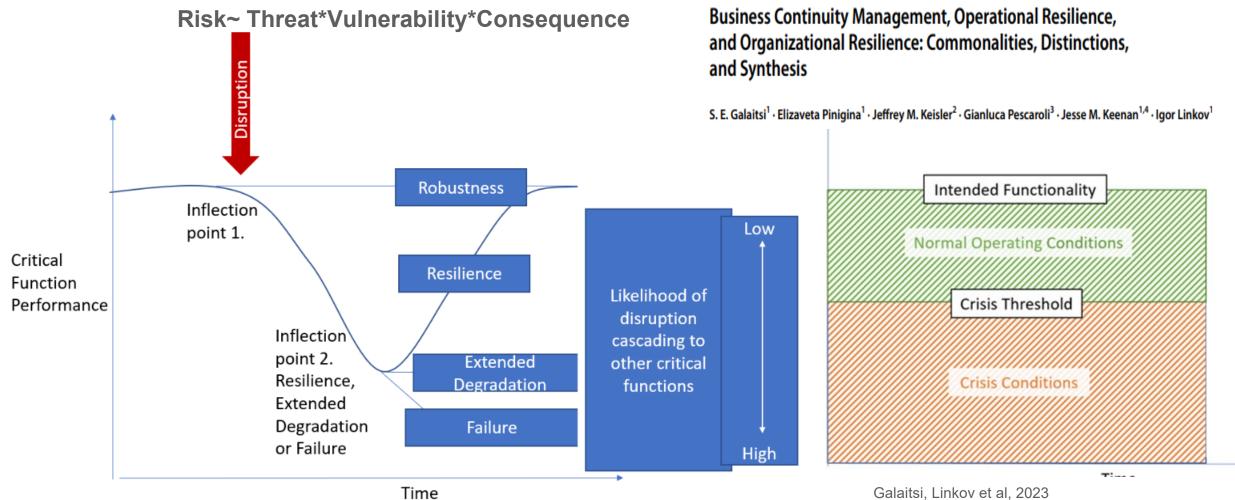
The White House

Over the last few decades, our Nation has grown increasingly dependent on critical infrastructure, th Office of the Press Secretary

our national and economic security. America's critical infrastructure is complex and diverse, combiniboth cyberspace and the physical world – from power plants, bridges, and interstates to Federal bui For Immediate Release massive electrical grids that power our Nation. During Critical Infrastructure Security and Resilience resolve to remain vigilant against foreign and domestic threats, and work together to further secure (


systems, and networks.

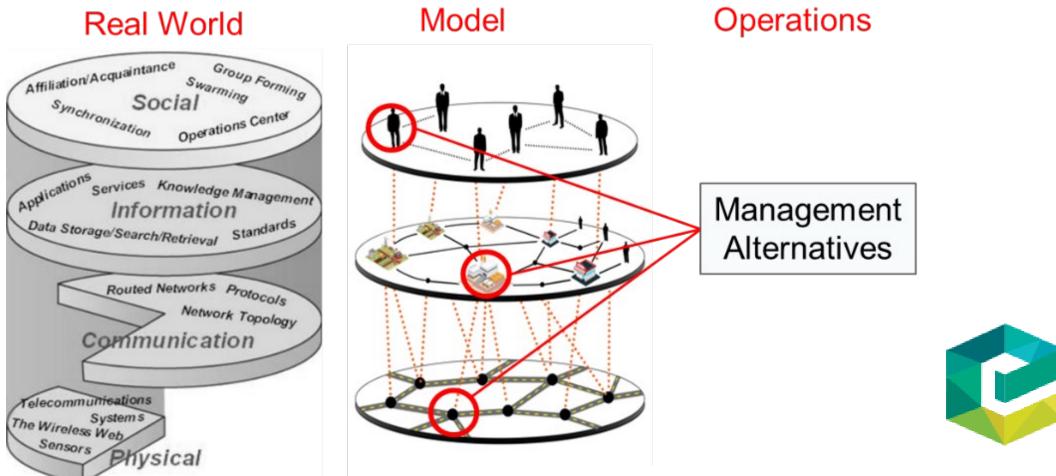
 (vi) Effective immediately, it is the policy of the executive branch to build and maintain a modern, secure, and more resilient executive branch IT architecture. Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure


May 11, 2017

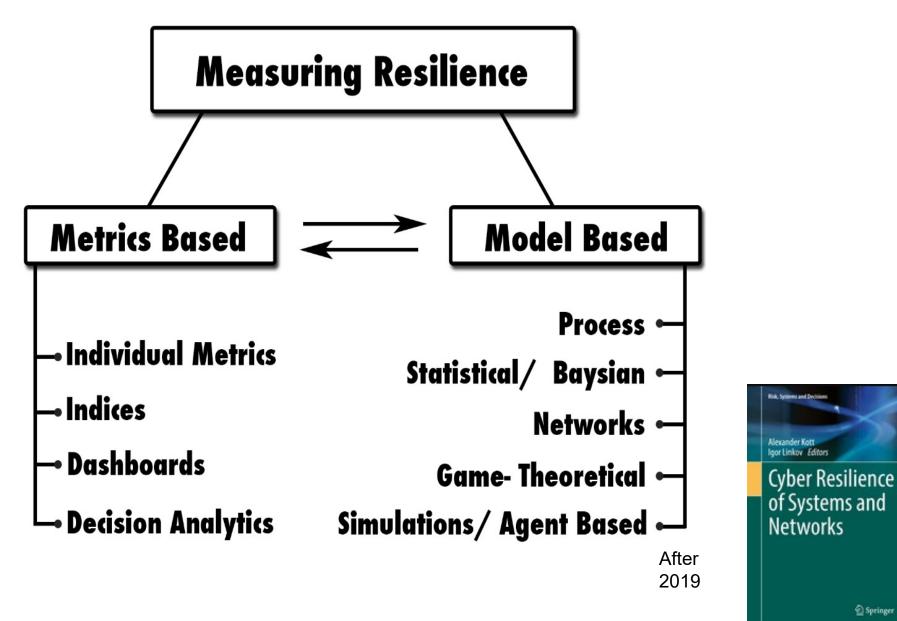
October 31, 2013

Resilience at the National Scale (USACE example)

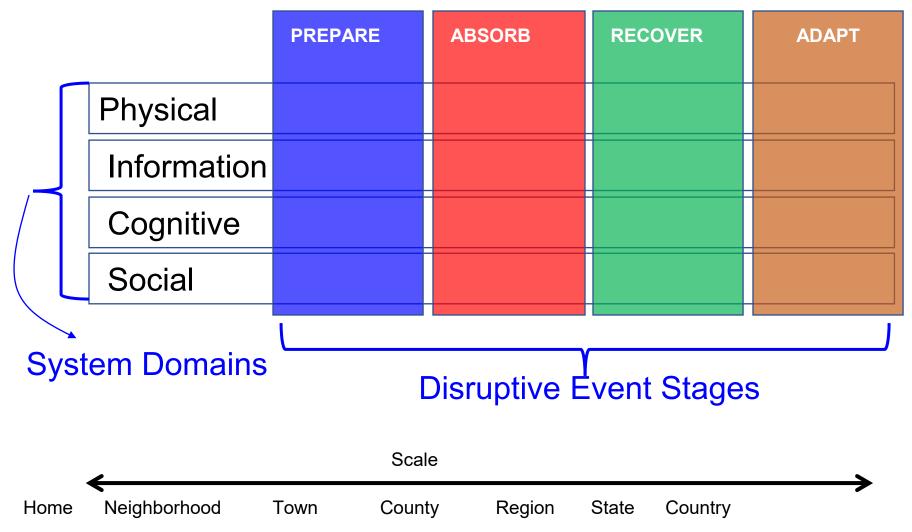
Crisis Management, Risk and Resilience


International Journal of Disaster Risk Science https://doi.org/10.1007/s13753-023-00494-x

Check for updates


ARTICLE

Vision for System Resilience



The case for value chain resilience

Igor Linkov, Savina Carluccio, Oliver Pritchard, Áine Ní Bhreasail, Stephanie Galaitsi, Joseph Sarkis and Jeffrey M. Keisler Management Research Review © Emerald Publishing Limited 2040-8269 DOI 10.1108/MRR-08-2019-0353 How to Quantify Resilience?

Resilience Matrix

Assessment using Stakeholder Values

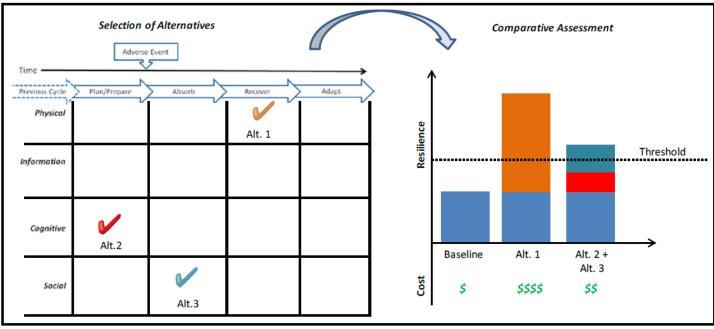


Figure 5: Comparative Assessment of Resilience-Enhancing Alternatives

Use developed resilience metrics to comparatively assess the costs and benefits of different courses of action

Contents lists available at ScienceDirect

Energy Policy

ENERGY POLICY

journal homepage: www.elsevier.com/locate/enpol

Short Communication

Metrics for energy resilience

Paul E. Roege^a, Zachary A. Collier^b, James Mancillas^c, John A. McDonagh^c, Igor Linkov^{b,*}

Resilience Matrix: Energy

	Plan and Prepare for	Refs	Absorb	Refs	Recover from	Refs	Adapt to	Refs
Physical	Reduced reliance on energy/increased efficiency Energy source diversity/ local sources	A,B, E,F, H A,E, F,H, K	Design margin to accommodate range of conditions Limited performance degradation under changing conditions	B,C, I,J,K B,C, F,I,K	System flexibility for reconfiguration and/or temporary system installation Capability to monitor and control portions of system	C,D, F,H, K B,I, K	Flexible network architecture to facilitate modernization and new energy sources Sensors, data collection and visualization capabilities to support system performance trending	C,D, F,K D,E, I,K
	Energy storage capabilities/ presaged equipment	B,H, K	Operational system protection (e.g., pressure relief, circuit breakers)	I,K	Fuel flexibility	C,D, E,F	Ability to use new/alternative energy sources	C,F, H
	Redundancy of critical capabilities	D,E, I,K	Installed/ready redundant components (e.g., generators, pumps)	D,I, K	Capability to re-route energy from available sources	C,D, F,I,K	Update system configuration/ functionality based upon lessons learned	C,D, L,F,I, K
	Preventative maintenance on energy systems	I,K	Ability to isolate damaged/ degraded systems/ components (automatic/ manual)	E,I,K	Investigate and repair malfunctioning controls or sensors	I	Phase out obsolete or damaged assets and introduce new assets	A,C, D,I, K
	Sensors, controls and communication links to support awareness and response	H,I, K	Capability for independent local/sub-network operation	D,K	Energy network flexibility to re- establish service by priority.	F,I,K	Integrate new interface standards and operating system upgrades	D,I, K
	Protective measures from external attack (physical/ cyber)	A,D, I,K	Alternative methods/ equipment (e.g., paper copy, flashlights, radios)	B,H, K	Backup communication, lighting, power systems for repair/recovery operations	I,K	Update response equipment/ supplies based upon lessons learned	D,L
Information	Capabilities and services prioritized based on criticality or performance requirements	В	Environmental condition forecast and event warnings broadcast	E,H, I	Information available to authorities and crews regarding customer/community needs/ status	D,I	Initiating event, incident point of entry, associated vulnerabilities and impacts identified	A,D, H,I, K
	Internal and external system dependencies identified	B,G, H	System status, trends, margins available to operators, managers and customers	D,E, H,I, K	Recovery progress tracked, synthesized and available to decision-makers and stakeholders	D,I	Event data and operating environment forecasts utilized to anticipate future conditions/ events	D,H, I,K
	Design, control, operational and maintenance data archived and protected	B,I	Critical system data monitored, anomalies alarmed	D,E, I,K	Design, repair parts, substitution information available to recovery teams	к	Updated information about energy resources, alternatives and emergent technologies available to managers and stakeholders	D,F, H,I
	Vendor information available	В	Operational/troubleshooting/ response procedures available	I,K	Location, availability and ownership of energy, hardware and services available to restoration teams	к	Design, operating and maintenance information updated consistent with system modifications	F,I,K

Table 1 The cyber resilience matrix

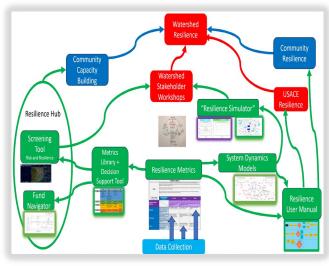
Plan and prepare for	Absorb	Recover from	Adapt to
Physical			
 Implement controls/sensors for critical assets [S22, M18, 20] 	 Signal the compromise of assets or services [M18, 20] 	 Investigate and repair malfunctioning controls or sensors [M17] 	 Review asset and service configuration in response to recent event [M17]
(2) Implement controls/sensors for critical services [M18, 20]	(2) Use redundant assets to continue service [M18, 20]	(2) Assess service/asset damage	(2) Phase out obsolete assets and introduce new assets [M17]
(3) Assessment of network structure and interconnection to system components and to the environment	(3) Dedicate cyber resources to defend against attack [M16]	(3) Assess distance to functional recovery	
(4) Redundancy of critical physical infrastructure		(4) Safely dispose of irreparable assets	
(5) Redundancy of data physically or logically separated from the network [M24]			
Information			
 Categorize assets and services based on sensitivity or resilience requirements [S63] 	 Observe sensors for critical services and assets [M22] 	 Log events and sensors during event [M17, 22] 	 Document incident's impact and cause [M17]
(2) Documentation of certifications, qualifications and pedigree of critical hardware and/or software providers	(2) Effectively and efficiently transmit relevant data to responsible stakeholders/ decision makers	(2) Review and compare systems before and after the event [M17]	(2) Document time between problem and discovery/discovery and recovery [S41]
(3) Prepare plans for storage and containment of classified or sensitive information			(3) Anticipate future system states post-recovery
(4) Identify external system dependencies (i.e., Internet providers, electricity, water) [S31]			Syst Decis (2013) 33:471–476
(5) Identify internal system dependencies [S63]		DOI 10.	1007/s10669-013-9485-y
Cognitive (1) Anticipate and plan for system states and events [M18]	 Use a decision making protocol or aid to determine 	(1) Review (physical a	SPECTIVES
	when event can be considered	in order to	

decisions

Resilience **Matrix:** Cyber

when event can be considered "contained"

Resilience metrics for cyber systems


Igor Linkov · Daniel A. Eisenberg · Kenton Plourde · Thomas P. Seager · Julia Allen · Alex Kott

USACE Watershed Resilience

• Project Objective:

- Develop a framework and replicable process to measure the resilience of:
 - 1. USACE missions
 - 2. Community-level infrastructure
 - 3. Critical functions across the watershed

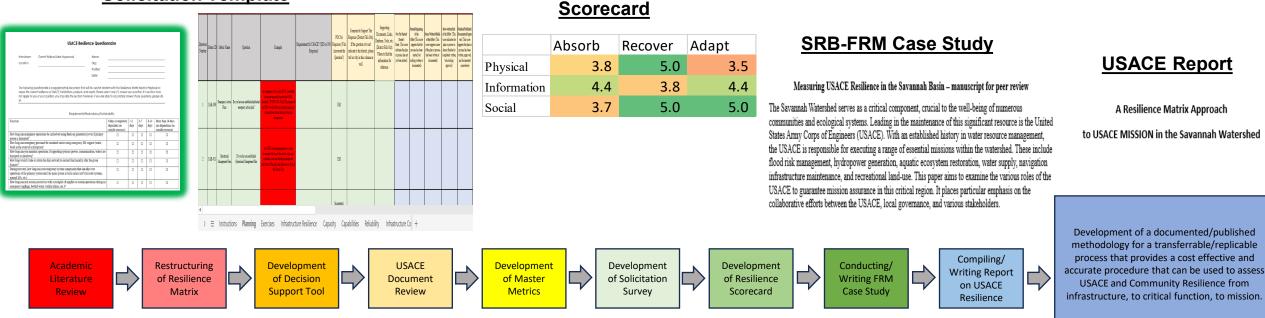
*green boxes are products in development

Pilot in the Savannah River Basin USACE Projects include: Hartwell, Russell, Thurmond

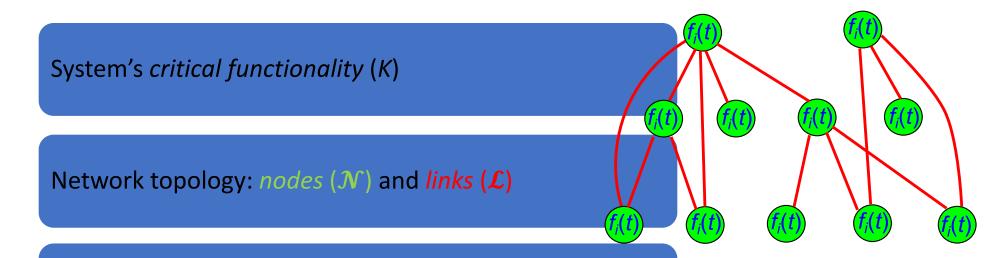
DSR3P Hypothesis #1: Resilience Capacity Building

- The resilience of USACE projects improves community resilience.
- Community resilience improves the resilience of USACE projects.

USACE Resilience Matrix Methodology


Resilience Matrix

	Absorb	Recover	Adapt		I
Physical	System Performance/Functionality	Recovery Time	Adaptive Capacity	Metric Name	Unit of Analysi
	System Reliability	Temporary Facilities	Infrastructure Condition	Risk Assessment Score	Capability
	Robustness	Recovery Resources	Modularity		
	Consequences of failure			Last Inspection Date	Capability
	System Vulnerability				
	Hazard Mitigation Measures			Last EAP Revision	Capability
	Redundancy			Last FAP Exercise	Capability
	Back-up Systems			Last LAP Exercise	Capability
	Emergency Resources			Worst Case Consequences	
Information	Failure Detection Systems	Recovery Tracking Data	Post-disaster data collection	Estimate	Capability
	Hazard Forecasting	Models for Recovery Scenarios	Adaptation Planning		
	Risk Assessment/Data	Recovery Planning	Plan Improvements	Operations Plans	Capability
	Emergency Planning				
	Mitigation Planning			Planning Review	Capability
	Disaster Propagation Models				
Social	Emergency Staffing	Community Recovery Assistance	Training Exercises	Emergency Exercises	Capability
	Emergency Support Agreements	Contractor Agreements	Community Education		
	Community Communication	Recovery Agreements	Improved Legislation		
	Staff Emergency Training			After-Action Reports	Capability


Master Metrics

	Metric Identification and Categorization						Me		
Metric Name 🕑	Unit of Analysis	System Doma ~	Resilience Phas ~	Metric Category 🗠	Critical Function ~	Measure Full Name	Level of Detail		
Risk Assessment Score	Capability	Physical	Absorb	System Vulnerability	FRM	Score from most recent Risk Assesment	Tier 2		
						Years since the most recent			
Last Inspection Date	Capability	Information	Absorb	Risk Assessment	FRM	comprehensive inspection of the dam	Tier 2		
						Years since the most recent revision to			
Last EAP Revision	Capability	Information	Adapt	Planning Improvements	FRM	the emergency action plan (EAP)	Tier 2		
						Years since the most recent EAP			
Last EAP Exercise	Capability	Social	Adapt	Training Exercises	FRM	exercise	Tier 2		
						Estimated economic cost for the			
Worst Case Consequences						worst-case dam failure scenario			
Estimate	Capability	Physical	Absorb	Consequences of Failure	FRM	(Maximum High Pool - Breach)	Tier 2		
						Degree (1-5) of completeness of			
Operations Plans	Capability	Information	Absorb	Mitigation Planning	FRM	operations plan	Tier 1		
						Years since the most recent review and			
Planning Review	Capability	Information	Adapt	Planning Improvements	FRM	update of the operations plans	Tier 2		
						Years since the most recent emergency			
						operation test exercise (or most recent			
Emergency Exercises	Capability	Social	Adapt	Training Exercises	FRM	emergency response)	Tier 2		
						% of exercises/events in the past 5-10			
						years where an after-action report was			
After-Action Reports	Capability	Information	Adapt	Post-disaster Data Collection	FRM	generated and reviewed by the district	Tier 2		

Solicitation Template

Network-based Resilience Theory?

Network *adaptive algorithms* (*C*) defining how nodes' (links') properties and parameters change with time

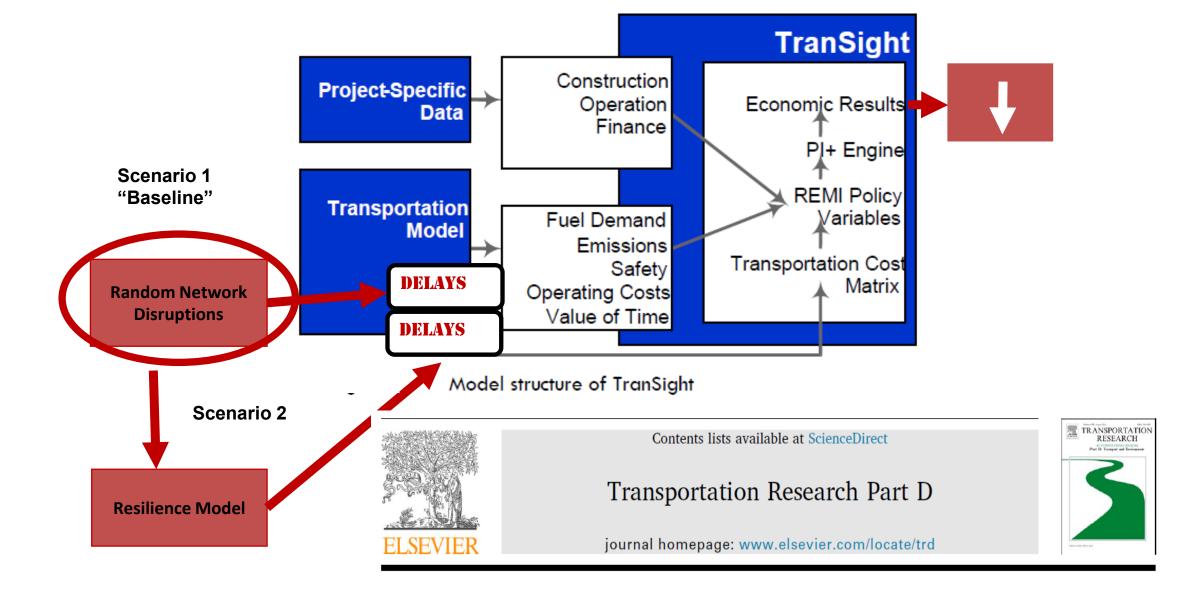
A set of possible damages stakeholders want the network to be resilient against (E)

 $R = f(\mathcal{N}, \mathcal{L}, \mathcal{C}, E)$

Poor Efficiency:

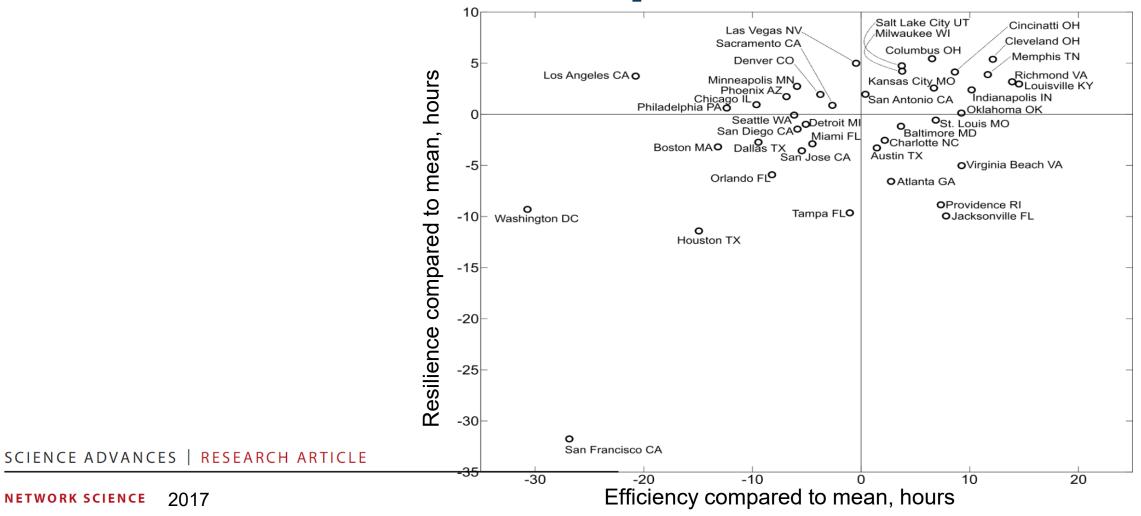
System cannot not accommodate a large volume of commuters driving at the same time.

Traffic congestions are predictable and are typically of moderate level.

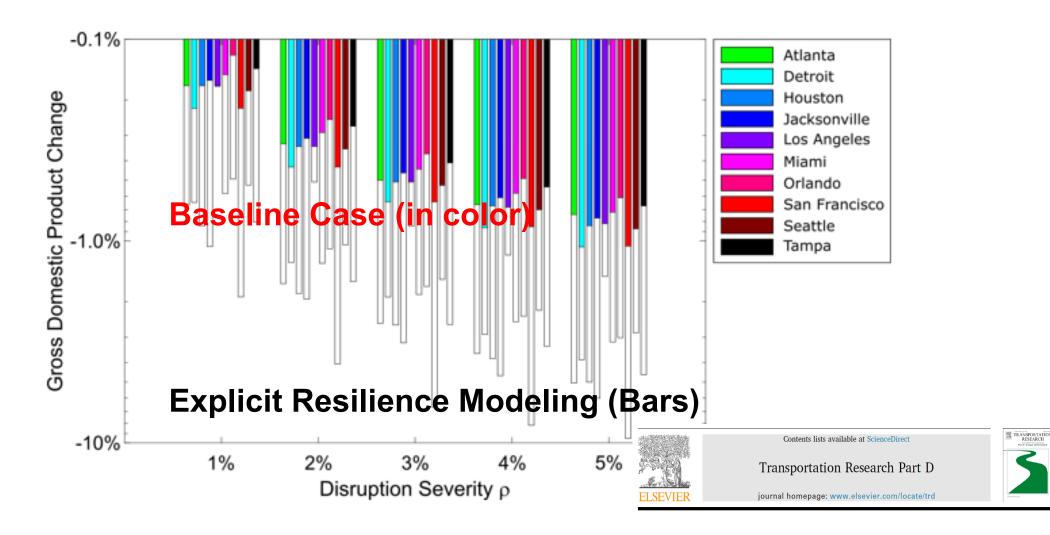


Lack of Resilience:

System cannot recover from adverse events (car accidents, natural disasters)


Traffic disruptions are not predictable and of variable scale.

Lack of resilience in transportation networks: Economic implications


Resilience vs Efficiency at 5% disruption

Resilience and efficiency in transportation networks

Alexander A. Ganin,^{1,2} Maksim Kitsak,³ Dayton Marchese,² Jeffrey M. Keisler,⁴ Thomas Seager,⁵ Igor Linkov²*

Lack of Resilience: Impact on GDP

Risk, Systems and Decisions

lgor Linkov Benjamin D. Trump

The Science and Practice of Resilience

NATO Science for Peace and Security Series - C: Environmental Security

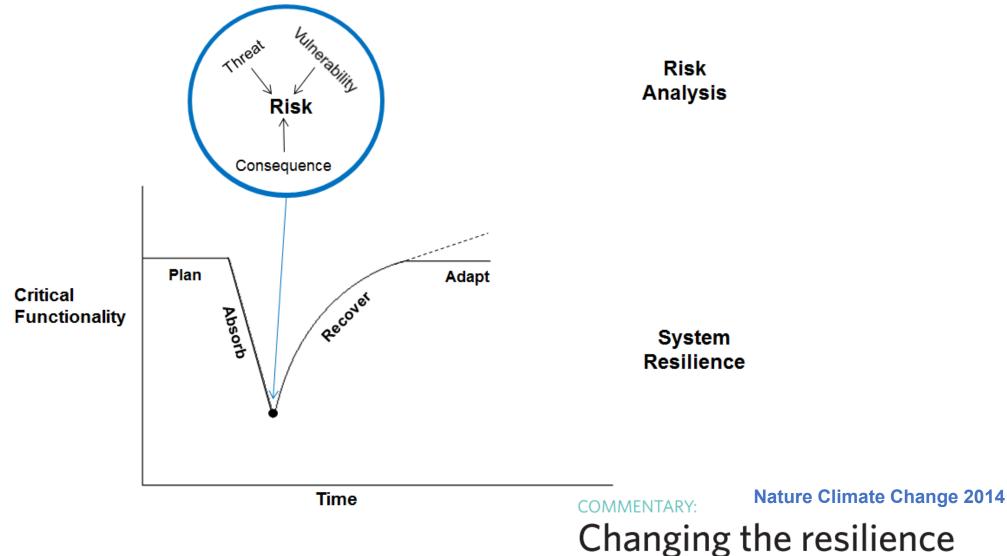
Resilience and Risk

Methods and Application in Environment, Cyber and Social Domains

> Edited by Igor Linkov José Manuel Palma-Oliveira

D Springer

NATO This publication The NATO Science for Peace and Security Programme Risk, Systems and Decisions


Igor Linkov Benjamin D. Trump Jesse M. Keenan Editors

COVID-19: Systemic Risk and Resilience

System Risk/Security and Resilience

Igor Linkov, Todd Bridges, Felix Creutzig, Jennifer Decker, Cate Fox-Lent, Wolfgang Kröger,

paradigm

EPFL Risks: Conventional, emerging, systemic

Type of risk	Definition	Main features	Example	Implications
Conventional risks	Known, well-defined risks	Familiarity– recognisable patterns and management regimes that are relatively stable and have proven to be effective if implemented according to certain rules	 Bicycle theft Salmonella infection Car accidents Obesity 	Use standard risk management practices , e.g., regulation
Emerging risks	New risks or known risks that become apparent in new context conditions (IRGC 2015)	Uncertainty regarding causes, potential consequences, and probabilities of occurrence Lack of familiarity with the risk	 New processes and products in the field of synthetic biology Malaria spreading to higher latitudes 	Focus on early detection and analysis of elements that triggers emerging risks. Prepare to revise decisions and adapt.
Systemic risks	Threats that individual failures, accidents or disruptions present to a system through the process of contagion	Highly interconnected risks with complex causal structures, non-linear cause-effect relationships Lack of knowledge about interconnections in an interdependent and complex environment, prevention	 Desertification and collapse of the Aral Sea 2008 global financial crisis Pandemics Cyber-security Global climate change Fish stocks depletion 	Focus on adaptation and transformation of the organisation and the system